85. Synthesis of 1*H*-1,2,3-Triazoles from 2-Substituted Cyclododecanones and Phenyl Azide

by Vassil I. Ognyanov¹) and Manfred Hesse*

Organisch-chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich

Dedicated to Prof. Dr. Burchard Franck on the occasion of his 65th birthday

(25.IV.91)

By reaction with phenyl azide, 2-cyano- and 2-(ethoxycarbonyl)-substituted cyclododecanones are converted into 5-amino- and 5-hydroxy-1*H*-1,2,3-triazoles, respectively. The possible reaction mechanism is discussed.

The base-catalyzed condensation of active methylene compounds **I** with azides, first described by *Dimroth* [1], is a general synthetic method for the construction of the 1*H*-1,2,3-triazole ring system [2]. The reaction proceeds through a triazene intermediate [3] formed by a nucleophilic attack of the carbanion of the active methylene compound on the terminal N-atom of the azide. Depending on the nature of the activating groups of the methylene compound, further regiospecific cyclization to a dihydrotriazole, followed by aromatization, leads to the formation of 5-amino- [4], 5-hydroxy- [1] [5] [6], or 5-alkyl-substituted [1] [6] [7] 1*H*-1,2,3-triazoles **II** (*Scheme 1*).

On leave from the Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.

Despite of the presence of a vast number of literature data on the *Dimroth* reaction, little is known about the reactivity of active methylene compounds substituted at the central C-atom. It was shown that the reaction of azides with alkyl- or aryl-substituted malonic esters [1] [6] or ethyl acetoacetates [1] follows a different course. In both cases, the substituent is entering at C(4) of the newly formed 5-hydroxy-1*H*-1,2,3-triazole, and the reaction is accompanied by decarboxylation. Since cycloalkanones substituted at C(2) with an electron-withdrawing group could be regarded as cyclic analogues of monosubstituted active methylene compounds, we were interested to investigate their behaviour under the conditions of the *Dimroth* reaction.

Treatment of 1-oxocyclododecane-2-carbonitrile (1) [8] with phenyl azide (2) [9] in the presence of a catalytic amount of NaOEt in EtOH/THF for four days at room temperature led to the formation of 5-amino-1-phenyl-1*H*-1,2,3-triazole **3** and lactam **4** in 60 and 10 % yield, respectively. It is known that, in the presence of base, 1-substituted 5-amino-1*H*-1,2,3-triazoles undergo *Dimroth* rearrangement into 5-(arylamino)-1*H*-1,2,3-triazoles substituted at the 5-amino group [10] [11]. Rearrangement of **3** in refluxing pyridine gave the corresponding 5-(phenylamino)-1*H*-1,2,3-triazole **5** in 98 % yield, thus providing an additional confirmation of the proposed structure of **3** (*Scheme* 2).

a) 0.2 Equiv. of NaOEt, EtOH, THF, 20°. b) Py, reflux. c) 0.2 Equiv. of NaOEt, EtOH, 20° or reflux. d) 0.2 Equiv. of NaH, THF, 20°. e) 1 Equiv. of NaOEt, EtOH, THF, 20°.

The formation of 3 might proceed through a mechanism analogous to that of the reaction of the corresponding monosubstituted active methylene compounds with azides (see Scheme 1): After the initial nucleophilic attack of the carbanion of 1, the triazene intermediate A undergoes regiospecific cyclization onto the CN function to dihydrotriazole intermediate B; nucleophilic ring opening induced by EtO⁻ then leads to the stable triazole 3 (Scheme 3). A similar ring opening of bicyclic compounds possessing an electron-withdrawing substituent serving as an anion-stabilizing group was used in our studies on the ring enlargement of cycloalkanones [12]. In the present case, the stabilization of the anion is assisted by an aromatization process. An experiment aiming at the isolation of intermediate B was conducted by using NaH instead of NaOEt as a base. Unfortunately, enol ester 6 was isolated as the main product, probably resulting from the nucleophilic ring opening of 1 (Scheme 2).

The side product of the reaction of 1 with NaOEt, the 14-membered lactam 4, could be regarded as a ring-enlarged product of 1 implying the CN function. We assume that 4 is formed by ring opening of intermediate **B**, rather than by intramolecular amidation of 3 (*Scheme 3*). Indeed, treatment of 3 with a catalytic or equivalent amount of NaOEt in EtOH at room temperature or under reflux gave a complex product mixture in which 4 could not be detected (*Scheme 2*).

Ethyl 2-oxocyclododecanecarboxylate (7) [13] reacted in an analogous manner with phenyl azide (2) in the presence of 1 equiv. NaOEt in EtOH/THF to give the corresponding 5-hydroxy-1-phenyl-1H-1,2,3-triazole 8 in 48% yield (*Scheme 2*).

These preliminary results show that cycloalkanones activated at C(2) with an electronwithdrawing group can be used successfully in the *Dimroth* reaction. Depending on the ring size and the type of the activating group of the cycloalkanone or the type of the azide, suitably 1,4,5-trisubstituted- 1*H*-1,2,3-triazoles could be prepared. Further investigations in this direction are in progress.

The support of this work by the Swiss National Science Foundation is gratefully acknowledged.

Experimental Part

General. If not otherwise mentioned, the following conditions were applied: the reactions were run in dry org. solvents under Ar; before evaporation, org. solns. were dried (Na_2SO_4) . Column chromatography (CC): silica gel *Merck 60*, 0.040–0.063 mm. M.p.: uncorrected. IR spectra (cm⁻¹): in KBr; *Perkin-Elmer-781* instrument. ¹H-NMR spectra: in CDCl₃; *Bruker-AC-300* spectrometer; chemical shifts in ppm rel. to internal TMS (=0 ppm), coupling constants J in Hz. ¹³C-NMR spectra: in CDCl₃; *Varian-XL-200* instrument; multiplicities from ¹H-decoupled or DEPT spectra. MS: *Varian-MAT-711* or *Varian-MAT-112* systems; chemical ionisation (Cl); peaks in *m*/*z*.

1. Ethyl 11-(5'-Amino-1'-phenyl-1'H-1',2',3'-triazol-4'-yl)undecanoate (3) and 6,7,8,9,10,11,12,13-Octahydro-3-phenyl-3H-1,2,3-triazolo[4,5-b]azacyclotetradecen-5(4H)-one (4). To a soln. of 1 [8] (1.03 g, 5 mmol) and 2 [9] (0.714 g, 6 mmol) in THF (2 ml) was added 21% NaOEt soln. of in EtOH (0.32 ml, 1 mmol). After stirring at 20° for 3 days, the mixture was dissolved in Et₂O, washed with 10% aq. NaOH and sat. NaCI soln., dried, and evaporated. The residue was chromatographed (100 g of silica gel, Et₂O/hexane 3:1): 3 (more unpolar, 1.12 g, 60%) and 4 (0.16 g, 10%).

Data of **3**: M.p. 61.5–62.5° (Et₂O/hexane). IR: 3364, 3324, 3200, 1736, 1650, 1600. ¹H-NMR: 7.58–7.45 (*m*, 5 arom. H); 4.11 (q, J = 7.2, CH₂O); 3.67 (br. s, NH₂, exchangeable with D₂O); 2.59 (t, J = 7.6, 2 H–C(11)); 2.27 (t, J = 7.5, 2 H–C(2)); 1.79–1.60 (m, 4 H); 1.34–1.22 (m, 15 H), therein at 1.24 (t, J = 7.2, CH₃). ¹³C-NMR: 173.7 (s, COO); 137.1 (s, 1 arom. C); 135.7 (s, C(4')); 130.6 (s, C(5')); 129.6, 128.7, 123.9 (3 d, 5 arom. C); 60.0 (t, CH₂O); 34.2 (CH₂); 29.3 (4 CH₂); 29.1, 29.0, 28.8, 24.8, 24.5 (5 CH₂); 14.1 (q, CH₃CH₂O). CI-MS: 373 ([M + 1]⁺), 344 ([M – N₂]⁺). Anal. calc. for C₂₁H₃₂N₄O₂ (372.50): C 67.71, H 8.66, N 15.04; found: C 67.98, H 8.74, N 15.32.

Data of **4**: M.p. 187.5–188.5° (CH₂Cl₂/Et₂O). IR: 3440, 3236, 1672, 1606. ¹H-NMR: 8.01 (*s*, NH, exchangeable with D₂O); 7.48 (*s*, 5 arom. H); 2.60 (*t*, J = 8.4, 2 H–C(13)); 2.34 (*t*, J = 6.0, 2 H–C(6)); 1.73–1.63 (*m*, 4 H); 1.4–1.21 (*m*, 12 H). ¹³C-NMR: 173.9 (*s*, CONH); 143.6 (*s*, C (3a)); 135.7 (*s*, 1 arom. C); 129.2 (2 *d*, 3 arom. H); 128.9 (*s*, C(13a)); 123.7 (*d*, 2 arom. H); 35.7, 27.0, 26.8, 25.8 (4 CH₂); 25.6 (2 CH₂); 24.7, 24.1, 23.9, 23.2 (4 CH₂). CI-MS: 327 ([M + 1]⁺), 298 ([$M - N_2$]⁺). Anal. calc. for C₁₉H₂₆N₄O (326.43): C 69.90, H 8.03, N 17.16; found: C 70.08, H 8.00, N 17.45.

2. *Ethyl* 11-[5'-(*Phenylamino*)-1'H-1',2',3'-triazol-4'-yl]undecanoate (5). A soln. of 3 (0.744 g, 2 mmol) in Py (2 ml) was heated under reflux for 6 h. After cooling, the mixture was poured into cold H₂O (100 ml), the separated oil extracted with CH₂Cl₂, the combined org. extract washed with sat. NaCl soln., dried, and evaporated, and the residue left *in vacuo* for removing traces of Py: **5** (0.73 g, 98%). Oil. IR: 3450, 3220, 1724, 1600. 'H-NMR: 12.21 (br. *s*, NH, exchangeable with D₂O); 7.26 (*dd*, J = 7.9, 7.9, 2 arom. H_m); 7.08 (*d*, J = 7.8, 2 arom. H_o); 6.89 (*dd*, J = 7.3, 7.3, 1 arom. H_p); 5.69 (*s*, NH–C(5'), exchangeable with D₂O); 4.14 (*q*, $J = 7.1, CH_2O$); 2.60 (*t*, J = 7.6, 2 H–C(11)); 2.29 (*t*, J = 7.5, 2H–C(2)); 1.70–1.59 (*m*, 4 H); 1.56–1.22 (*m*, 15 H), therein at 1.24 (*t*, $J = 7.1, CH_3$). ¹³C-NMR: 174.1 (*s*, COO); 144.8 (*s*); 143.5 (*s*); 129.1 (*d*, 2 arom. C); 128.1 (*s*, 1 arom. C); 119.9 (*d*, 1 arom. C); 115.2 (*d*, 2 arom. C); 60.3 (*t*, CH₂O); 34.3, 29.3, 29.2 (3 CH₂); 29.1 (3 CH₂); 29.0, 28.1, 24.9, 23.9 (4 CH₂); 14.2 (*q*, CH₃CH₂O). CI-MS: 373 ([*M* + 1]⁺), 344 ([*M* – N₂]⁺).

3. 2"-Cyanocyclododec-1"-en-1"-yl 11-(5'-Amino-1'-phenyl-1'H-1',2',3'-triazol-4'-yl)undecanoate (**6**). To a soln. of **1** (1.03 g, 5 mmol) and **2** (0.714 g, 6 mmol) in THF (2 ml) was added NaH (1 mmol). After stirring at 20° for 3 days, the mixture was worked up as described in *Exper.1*: **6** (0.76 g, 57%). Oil. IR (neat): 3420, 3328, 3194, 3054, 2218, 1760, 1630, 1600. 'H-NMR: 7.60–7.47 (*m*, 5 arom. H); 3.63 (br. *s*, NH₂, exchangeable with D₂O); 2.90–1.19 (*m*, 40 H), therein at 2.61 (*t*, *J* = 7.6, 2 H–C(11)) and at 2.49 (*t*, *J* = 7.4, 2H–C(2)). ¹³C-NMR: 169.9 (*s*, COO); 164.1 (*s*, C(1")); 137.1 (*s*, 1 arom. C); 135.7 (*s*, C(5')); 130.6 (*s*, C(4')); 129.6 (*d*, 2 arom. C); 128.9 (*s*, 1 arom. C); 123.9 (*d*, 2 arom. C); 118.1 (*s*, CN); 106.0 (*s*, C(2")); 34.1, 32.5 (2 CH₂); 29.3 (3 CH₂); 29.2, 29.1, 29.0, 28.9, 28.8, 26.6, 26.2, 24.9, 24.8, 24.7, 24.6, 24.5, 24.4, 24.3, 23.6 (15 CH₂). CI-MS: 327, 299, 265, 208.

4. *Ethyl 11-(5'-Hydroxy-1'-phenyl)-1'H-1',2',3'-triazol-4'-yl)undecanoate* (**8**). To a soln. of **7** [13] (1.27 g, 5 mmol) and **2** (0.714 g, 6 mmol) in THF (10 ml) was added 21% soln. of NaOEt in EtOH (1.92 ml, 6 mmol), the mixture was stirred at 20° for 3 days, and the solvent evaporated. The residue was dissolved in H₂O (100 ml) and extracted with Et₂O (3 x 30 ml). The aq. phase was acidified with dil. HCl soln. and extracted with CH₂Cl₂ (3 × 30 ml), the combined org. extract washed with H₂O, dried, and evaporated, and the residue chromatographed (100 g of silica gel, Et₂O): **8** (0.89 g, 48%). Oil. IR: 3450, 1738, 1602. 'H-NMR: 7.92 (*d*, *J* = 7.5, 2 arom. H); 7.47–7.34 (*m*, 3 arom. H); 6.60 (br. *s*, OH, exchangeable with D₂O); 4.13 (*q*, *J* = 7.2, CH₂O); 2.62 (*t*, *J* = 7.7, 2H–C(11)); 2.28 (*t*, *J* = 7.5, 2 H–C(2)); 1.65–1.56 (*m*, 4 H); 1.44–1.04 (*m*, 15 H), therein at 1.26 (*t*, *J* = 7.2, CH₃). ¹³C-NMR:

173.9 (*s*, COO); 152.2 (*s*, C(5')); 136.2 (*s*, 1 arom. C); 128.9 (*d*, 2 arom. C); 128.0 (*d*, 1 arom. C); 123.9 (*s*, C(4')); 122.1 (*d*, 2 arom. C); 60.1 (*t*, CH₂O); 34.3, 29.6, 29.5 (3 CH₂); 29.3 (2 CH₂); 29.2, 29.1, 28.7, 24.9, 23.0 (5 CH₂); 14.2 (*q*, CH₃CH₂O). CI-MS: 347 ([*M* – N₂]*).

REFERENCES

- [1] O. Dimroth, Ber. Dtsch. Chem. Ges. 1902, 35, 1029, 4041.
- [2] H. Wamhoff, in 'Comprehensive Heterocyclic Chemistry', Eds. A. R. Katritzky and C. W. Rees, Pergamon Press, Oxford, 1984, Vol. 5, p. 669; T. L. Gilchrist, G. E. Gymer, Adv. Heterocycl. Chem. 1974, 66, 42.
- [3] K. M. Baines, T. W. Rourke, K. Vaughan, D. L. Hooper, J. Org. Chem. 1981, 46, 856.
- [4] H. Wamhoff, W. Wambach, Chem.-Ztg. 1989, 113, 11; G. L'abbé, L. Beenaerts, Tetrahedron 1989, 45, 749;
 A. Dornow, J. Helberg, Chem. Ber. 1960, 93, 2001; J. R. E. Hoover, A. R. Day, J. Am. Chem. Soc. 1956, 78, 5832.
- [5] P. H. Olesen, F. E. Nielsen, E. B. Pedersen, J. Becher, J. Heterocycl. Chem. 1984, 21, 1603.
- [6] M. Begtrup, C. Pedersen, Acta Chem. Scand. 1969, 23, 1091.
- [7] C. Martini, W. Marrucci, A. Lucacchini, G. Biagi, O. Livi, J. Pharm. Sci. 1988, 77, 977; G. L'abbé, G. Mathys, S. Toppet, J. Org. Chem. 1975, 40, 1549.
- [8] B. Föhlisch, R. Herter, E. Wolf, J. J. Stezowski, E. Eckle, Chem. Ber. 1982, 115, 355.
- [9] 'Organic Syntheses', John Wiley & Sons, New York, 1955, Coll. Vol. 3, p. 710.
- [10] O. Dimroth, Liebigs Ann. Chem. 1909, 364, 183.
- [11] G. L'abbé, J. Heterocycl. Chem. 1984, 21, 627.
- [12] St. Bienz, M. Hesse, Helv. Chim. Acta 1987, 70, 2146; M. Hesse, 'Ring Enlargement in Organic Chemistry', Verlag Chemie, Weinheim, 1991.
- [13] J. Tsuji, T. Yamada, I. Shimizu, J. Org. Chem. 1980, 45, 5209.